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Abstract— Design space exploration and sensitivity analysis for
electrical performance of high-speed serial links is a critical and
challenging task for a robust, cost-efficient, and signal-integrity-
compliant channel design. The generation of time-domain (TD)
metrics like eye height and eye width at higher bit error rates
requires longer bit sequences in TD circuit simulation, which is
compute time intensive. Intelligent techniques to identify smaller
design sets that cover the design space optimally may provide
incorrect sensitivity analysis. This paper explores learning-based
modeling techniques that rapidly map relevant frequency-domain
metrics like differential insertion loss and total cross talk, in
the presence of equalization, to TD metrics like eye height and
eye width, thus facilitating a full-factorial design space sweep.
Numerical results performed with multilayer-perceptron-based
artificial neural network as well as least-squares support vector
machine (LS-SVM) on Serial ATA 3.0 and Peripheral Component
Interconnect Express Gen3 channels generate an average error
of less than 2%.

Index Terms— Artificial neural network (ANN), eye height,
insertion loss (IL), multilayer perceptron (MLP), Peripheral
Component Interconnect Express, return loss (RL), Serial ATA,
signal integrity.

I. INTRODUCTION

H ISTORICALLY, eye diagrams and their characteristics,
eye height (EH) and eye width (EW), have served as a

metric for the quality of high-speed channels. With increasing
data rates, the interconnect lengths on package boards start
becoming electrically long, and hence, accurate transmis-
sion line models [1] and S-parameters [2] for SPICE time-
domain (TD) simulations, using convolution of channel pulse
response and input bit streams, were developed. However,
with more stringent bit error rate requirements, this process
became compute power and time intensive. Based on methods
to estimate probability of error for binary symmetric channels
in the presence of intersymbol interference (ISI) and cochannel
interference [3], algorithms like LinkLab [4] and StatEye [5]
utilizing probability density function estimates of jitter and ISI
were formulated to obtain eye contours and bath tub curves [6].
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However, these approaches did not capture the nonlinear nature
of the transmitter and receiver accurately.

Hybrid approaches were developed to capture the goodness
of statistical estimates and parallel TD simulations of select bit
sequences [7]–[9]. However, given all the elements to speed
up channel analysis, for a selected channel topology, there are
several variables impacting the signal quality. These variables
include controllable variables like trace length, impedance
termination, and uncontrollable variables such as process and
manufacturing tolerances.

Design rules are needed to ensure that signal quality is
maintained. In order to come up with design rules, several
TD simulations are needed to cover the design space. State-
of-the-art existing methods involve statistical or optimization
techniques using design of experiments (DoE), involving a
systematic approach to select the smallest set of designs that
optimally captures the design space using different ideologies
such as orthogonality, replication, randomization, and block-
ing [10]. Response surface method [11] can be used to fit
the DoE-based designs to predict EH and EW and perform
Monte Carlo analysis. Parametric mapping using the multi-
layer perceptron (MLP)-based artificial neural network (ANN)
can also predict EH and EW from channel topology vari-
ables [12]. A DoE-based training mechanism was used to train
the network in order to capture the dependence of EH and
EW on channel parameters. From [13], it is also evident that
for a design space with large dimensions and highly nonlin-
ear EH/EW behavior, a DoE-based approach can sometimes
provide an inaccurate sensitivity analysis compared with a
full-factorial sweep across all possible design and process
variations. In spite of all the advanced techniques for accu-
rate eye diagram generation discussed above, a full-factorial
sweep TD simulation is prohibitive due to its excessive time
requirements. An end-to-end channel simulation in frequency
domain (FD) involves cascading available macromodels of
individual channel components and is almost 100× faster than
the TD simulation. Hence, a full-factorial design space sweep
may be possible in FD.

In this paper, building on the work presented in [14],
a methodology for creating learning-based models for mapping
S-parameters directly onto eye diagram metrics, EH/EW, is
discussed. The goal of this paper is not to reconstruct the
TD waveform at the receiver or to construct a complete
eye diagram, but predicting only EH and EW metrics from
S-parameter data in order to facilitate a full-factorial design
space exploration, which is currently computationally pro-
hibitive. The input parameters to the mapping process are
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Fig. 1. PCIe Gen2 topology with one differential pair and variable
interconnect length L .

Fig. 2. Eye diagram profile for the PCIe Gen2 topology of Fig. 1 for L = 4 in.

the chosen S-parameters that affect the EH and EW under
consideration. For generating an effective map, learning-based
modeling techniques are explored. Based on experimental
results, least-squares support vector machine (LS-SVM) and
MLP-based ANN are chosen for this application with appro-
priate model parameter selection. A DoE-based training set
is used to train the ANN and a full-factorial design space
sweep is enabled by translating FD parameters to TD metrics
EH and EW through learning-based models. With increasing
design space dimensions in the DoE process, the size of
the training set and correspondingly training time may be
adversely affected. A reduced training set (RTS) method is
proposed to alleviate this problem and generate a bound in
the number of vectors used for training.

This paper is organized as follows. In Section II, FD-to-
EH/EW mapping is proposed as a viable alternative for full-
factorial design sweep and the constituent steps are outlined.
In Section III, a brief overview of filtering-based feature
selection (FS) techniques for identifying frequency steps for
mapping is presented. In Section IV, learning-based modeling
techniques used in the proposed approach are explained.
In Section V, the training set generation methods, DoE and
RTS, are described. In Section VI, the numerical results are
presented to demonstrate the efficacy of the proposed approach
for Serial ATA (SATA) 3.0 and Peripheral Component Inter-
connect Express (PCIe) Gen3 interfaces. Section VII gives a
critical analysis of the proposed algorithm, and Section VIII
concludes this paper.

II. FD-TO-EH/EW MAPPING

DoE for the design space exploration of high-speed Serial-
izer/Deserializer (SerDes) (HSS) channels may provide incor-
rect sensitivity analysis as demonstrated in the following
example. A PCIe Gen2 topology with a single pair of dif-
ferential ports is shown in Fig. 1. The design space consists
of the length of the interconnect L.

TD SPICE simulations are performed with S-parameter
models of the channel for L ranging from 2 to 5 in at

Fig. 3. Sensitivity of EH as a function of L for the PCIe Gen2 topology of
Fig. 1. The equidistant samples, representative of a typical DoE, do not capture
the real profile as evident from the full-factorial finely sampled simulations.

Fig. 4. (a) IL profiles for the PCIe Gen2 channel of Fig. 1. (b) Zoom 1.
(c) Zoom 2.

20-mil variations. Fig. 2 shows the eye diagram at L = 4 in
for a 10b8b nonreturn to zero code simulated over 8000 b.

Fig. 3 represents the plot of EH versus L. The bold
line shows the actual variation of EH with L measured
over 151 different values of L, whereas the dotted line
and circles indicate the EH at five equally spaced points
between 2 and 5 in representative of a DoE-based sampling.
It is evident that the DoE-based smaller set gives inaccurate
information of the sensitivity of EH with L over the range
under consideration.

From this example, it is seen that a finer sampling may
be required for an appropriate estimation of EH and its
sensitivity. However, such a large number of TD simulations
are prohibitive due to excessive compute time requirements.

Since the FD parameters of the channel are readily available
from cascading the macromodels of the individual chan-
nel components, it is tempting to resort to a map from
FD to EH/EW in order to alleviate the time bottleneck.
An exercise was performed to identify such a relationship
for PCIe Gen2 channel shown in Fig. 1 without any cross
talk. In Figs. 4 and 5, the differential insertion loss (IL) and
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TABLE I

RL AND IL PROFILES FOR DIFFERENT DESIGN CORNERS OF PCIe Gen2 CHANNEL OF FIG. 1

Fig. 5. RL profiles for the PCIe Gen2 channel of Fig. 1.

Fig. 6. Top-level block diagram of information flow in the proposed mapping
methodology.

differential return loss (RL) profiles for several values of L
for the channel in Fig. 1 are shown. In Table I, the first
column lists the EH for four designs. The second and third
main columns list the IL and RL at the indicated frequencies
for the same designs. It can be seen from column 3 and
rows 3 and 6 that a negligible variation of 0.38 dB in
differential IL at 2 GHz in FD appear as a 24-mV difference
in EH. In addition, comparing rows 5 and 6 for column 7, it is
observed that better RL values lead to worse EH. Searching
for a pattern in the IL and/or RL profiles at the second and
third harmonics results in no meaningful conclusions either.
Therefore, it can be concluded that the FD-to-EH/EW mapping
is not straightforward.

This leads to an exploration of learning-based modeling
techniques to map FD S-parameter data to EH/EW. A top-
level block diagram indicating the objective of the mapping
process is shown in Fig. 6, where f1, f2, and fn represent the
frequency points where the S-parameter profiles are sampled.

The process of creating such a model to predict EH/EW
from S-parameters can be broken down into three steps for a
given interface.

Step 1: Identifying the S-parameters and frequency step size
for optimal mapping.

Step 2: Applying learning-based modeling and identifying
optimal modeling parameters.

Step 3: Identifying a suitable training set.

Fig. 7. S-parameter profiles for the PCIe Gen2 channel of Fig. 1.
(a) Differential–common. (b) Common–differential.

III. PARAMETER AND FREQUENCY SELECTION

For the channel mentioned above, the differential IL and RL
profiles for several values of L are shown in Figs. 4 and 5(a).
However, there are other S-parameters like common–
differential and differential–common. Fig. 7(a) and (b) shows
the profiles for SDC12 and SCD12, respectively, for the
channel under consideration. In the frequency range of interest,
from 1 to 9 GHz, the profiles of SCD12 and SDC12 are
considerably lower in magnitude as well as contain less
information compared with the differential IL, and hence,
for this case, only differential S-parameters for the through
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channel are considered as input for the mapping process.
In addition, the channels considered here are highly linear
in the phase response over the frequency range selected, and
hence, there is no impact of the phase of S-parameters on the
EH and EW.

Such a study needs to be done to satisfy Step 1 and identify
relevant S-parameters. In addition, a critical challenge in this
process is the selection of appropriate frequency points that
would be used to train and use the network. In [15], a discrete
frequency sweep using a fixed start frequency, end frequency,
and frequency step size was employed. However, this is a
nonoptimal solution and the choices of frequencies are heavily
dependent on the channel type.

In [16], a frequency selection process for FD-to-EH/EW
mapping is described using a filter-based FS algorithm that
identifies the frequencies containing maximum information
for each of the EH/EW values observed in the DoE set and
removes frequencies that contain redundant data. This process
of intelligent input selection facilitates accurate modeling
while reducing the input set size. In the numerical results
presented in this paper, uniform frequency sampling based on
channel characteristics has been used.

IV. LEARNING-BASED MODELING

Learning-based modeling is a way to establish a parametric
relation between two different models of the same physical
system, wherein one model is accurate but requires expensive
functional evaluations and the other is cheap to evaluate but
less accurate, called the coarse model [17], [18]. In the context
of FD to EH/EW, it can be explained as follows.

Let X be the set of designs in the design space of a given
HSS channel. Let D ⊂ X be the set of DoE of size d for that
channel and xi ∈ X be the i th design. Let ti ∈ T ⊆ R1 be
the TD metric (EH/EW) and fi ∈ F ⊆ Rm , m � 1, be the
FD metric or vector of S-parameters, for the i th design xi .
Let {t1, t2, . . . , td } be the set of d EH (EW) simulation results
and { f1, f2, . . . , fd } be the set of d FD simulation results.
If P : F → T is the modeling function that maps FD to
EH/EW, then the learning-based modeling problem can be
summarized as obtaining P , such that

t = P( f ) (1)

s.t. ‖ti − P( fi )‖ ≤ ε ∀xi ∈ D (2)

where ε is a nonzero positive real number. This process
of obtaining the modeling function P for learning-based
modeling techniques is iterative in nature. Many surrogate
modeling techniques exist, but none of them has proven to be
globally optimal across a range of problems [19]–[25]. A brief
overview of four of the techniques studied for this paper is
presented in Table II. Two techniques, namely, ANNs using
MLP topology and LS-SVM, are found to be more suited
to handle a high-dimensional mapping problem such as the
FD-to-EH/EW mapping discussed here. These two techniques
are described in detail in this section.

A. Least-Squares Support Vector Machines

The support vector machine (SVM) algorithm creates a
classification function that is tuned to maximize the margin

TABLE II

OVERVIEW OF LEARNING-BASED MODELING TECHNIQUES

Fig. 8. SVM feature mapping technique.

between training examples and classification boundary, in
the process, identifying support vectors that are crucial to
the classifier and discarding outliers. If the sample space is
highly nonlinear for classification, the algorithm uses kernel
functions to map this space into a higher dimensional feature
space wherein an optimal hyperplane separating the classes or
passing through all the training data is created [19], [20], as
shown in Fig. 8.

In the work presented in this paper, LS-SVM is used for
mapping, where the kernel is the L2-Norm.

B. ANNs and MLP

Neural networks are machines that are made to function in
a manner similar to a brain. Their two main functions are to
acquire knowledge from the environment through a learning
process and store this knowledge in weights. The prediction
function for a single-hidden-layer MLP ANN with N inputs,
M hidden nodes, and one output is

y = f (x) =
M∑

j=1

k j ∗ G

(
N∑

i=1

wij xi + b j

)
+ d (3)

G(x) = 2

1 + e−2x
− 1 (4)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AMBASANA et al.: EH/EW PREDICTION FROM S-PARAMETERS USING LEARNING-BASED MODELS 5

Fig. 9. Generic architecture of an ANN.

where x is the input vector, wij is the weight connecting the
i th input node to the j th hidden perceptron, and k j is the
weight connecting the j th hidden perceptron to the output
node. An MLP is a two or more layer neural network with
neuron units as perceptrons that have nonlinear activation
functions in the hidden layer/s [21], as shown in Fig. 9. The
intrinsic equation of an MLP makes it suitable for mapping
the input M-D vector onto continuous output functions. In this
work, the Levenberg–Marquardt (LM) algorithm [22] is used
for training and gradient descent approaches is used on mean-
squared error for weight optimization in back-propagation
learning for a single-layer feedforward network with one
hidden layer having a tan sigmoid activation function. The
output layer is a linear mapping function.

C. Model Parameter Selection

Designing ANN for a particular task requires several para-
meter settings to be chosen by the user. Some of these
settings are the number of hidden layers, the interconnections
between neurons, the number of neurons in each layer, the
activation function in the hidden and output layers, the training
algorithm, and performance metric and constants controlling
the training process. The goodness of a model and the speed
with which it converges depends largely on the model para-
meters that impact the training function. The performance of
the LM algorithm is influenced by the damping factor μ.
At every iteration of the algorithm, the value of μ is modified
by a positive increment of �μ+ or a decrement of �μ−.
The learning iterations stop when the mean-squared error
approaches a target goal ε or the gradient of the error function
exceeds a threshold δ f . The network is initialized with a set
of weights w0.

In Fig. 10, it is demonstrated using two of the training
parameters (μ and w0) that the error metric is a highly
nonlinear and steeply varying function in the training para-
meter space. A method of nested binning in the parameters,
μ,�μ+,�μ−, δ f , and w0, mentioned above is used to arrive
at a set of training parameter values for a particular problem
space. However, more elegant global optimization techniques
like the genetic algorithm [23] can be used to determine the
network parameters for optimal performance.

V. TRAINING SET GENERATION METHODS

One of the two primary tasks of learning-based models is to
acquire knowledge from the system through a learning process.

Fig. 10. Error surface over training parameters μ and w0. It can be observed
that the error metric is highly nonlinear and steeply varying function in the
training space.

This task can be broken down into two phases: 1) training
and 2) validation. While training the model, it is necessary
to cover the design space optimally as well as keep the set
as small as possible. The validation set is required to ensure
that the network is not overtrained. Two different methods of
generating a training set are described here.

A. Design of Experiments

DoE is a method to generate a reduced set of designs
mathematically calculated to cover the entire design space
in the fewest possible set of vectors. A detailed explanation
of methods of generating a DoE set can be found in [10].
In this paper, the central composite design method of
generating DoE is used, resulting in a training set size of
(2d−1 + 2d + 1) designs, where d is the dimension of the
design space. Designs selected based on the DoE algorithm
are simulated in FD and TD to get the EH/EW. These data
are used for training the model, which is then used to predict
EH/EW values for a full-factorial set of FD simulations.

B. Reduced Training Set

A considerable improvement in speedup of the design space
exploration/sensitivity analysis process can be obtained if a
training set is generated so as to not have the handicap
of scaling with the design space dimensions d . In the case
of FD-to-EH/EW mapping, such a set can be devised if
a full-factorial design simulation in FD is available.

The concept of RTS is to ensure that the model is trained
across the entire input span irrespective of the range of inputs.
Hence, it is sufficient to train the model on designs that form
the outliers and median at each sampled frequency point. As an
extension of the example presented in Section II, differential
IL for a particular topology is obtained by full-fledged all
corner FD simulations for a given set of design variables.
For each of the sample points lying on the vertical lines
indicated in Fig. 11, three values are identified, the minimum,
the maximum, and the nearest to median.

The designs corresponding to each of the identified differ-
ential IL values at discrete preselected frequencies are then
combined and used as the RTS. TD simulations are conducted
for the selected designs in the RTS. These TD and FD data
are then used for training the ANN.
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Fig. 11. Outlier and median-based design selection for differential IL.

Fig. 12. RTS over DoE speedup comparison curve.

The benefit of this method of identifying a training set for a
given topology can be seen from Fig. 12. The size of a DoE set
for a given topology (Sd ) scales exponentially with the number
of design variables (5), whereas the size of the training set
obtained by the RTS technique (Sr ) is always bounded by the
limits indicated in (6). If d is the design space size (number of
design variables), M is the number of FD metrics considered
for mapping, and K is the number of samples of FD metrics
fed into the space map as input, then

Sd = 2d−1 + 2d + 1 (5)

3M ≤ Sr ≤ 3M K . (6)

VI. NUMERICAL RESULTS

In this section, numerical experiments are performed
using the proposed learning-based mapping methodology to
accurately predict EH/EW values from S-parameters.

The experimental process is summarized in Fig. 13. The
diagram also highlights the methodology for testing the
learning-based models generated.

Numerical experiments are performed on two HSS inter-
faces, SATA 3.0 and PCIe Gen3, to quantify the performance
of ANN and SVM to map S-parameters to EH/EW. The

Fig. 13. Learning-based model generation and testing procedure used for the
testing prediction accuracy for SATA 3.0 and PCIe Gen3 channels, presented
in Section VI.

metrics used to measure mapping accuracy are, L2-Norm error
(ε), average error (μ), and maximum error (δ), as defined
below

ε(
a, 
b) =
√√√√

∑N
i=1 |ai − bi |2∑N

i=1 |ai |2
(7)

μ(
a, 
b) =
∑N

i=1 |ai − bi |
N

(8)

δ(
a, 
b) = MAX
i∈[1,N] |ai − bi | (9)

where ai are the predicted EH/EW values for the i th channel
topology using the proposed mapping methodology and bi are
the values obtained after simulating the channel in TD using
a SPICE simulator. N is the size of the test set.

A. SATA 3.0

The topology shown in Fig. 14 is used in three serial-
link differential pairs shown in Fig. 17. The design space is
formed of seven variables: the driver port capacitance (Cdrv),
expander board impedances (Zexp 1 and Zexp 2), length of
expander board (Lexp), backplane impedance (Zbp), length
of the backplane (Lbp), and receiver port capacitance (Crcv).
Figs. 15 and 16 show the IL and total far-end cross
talk (FEXT) profiles for all the test cases over 0–10 GHz.
The S-parameters chosen for input to the mapping process
are differential IL of the victim and total FEXT at the victim
receiver port, sampled at 500 MHz from 1–9 GHz. The models
are formed by training over a set generated by DoE and RTS
techniques discussed in Section V. Fig. 18 shows the simulated
eye diagram for the variable values Crcv and Cdrv set at 0.2 pF,
Lexp to 2 in, Lbp to 9 in, and Zexp 1, Zexp 2, and Zbp to 115 �.
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Fig. 14. SATA 3.0 topology from the controller to the hard disk drive for a single differential pair.

Fig. 15. (a) IL profiles for different combinations of design variables for
SATA 3.0 of Fig. 14. (b) Zoom 1. (c) Zoom 2.

Fig. 16. (a) Total FEXT for different combinations of design variables for
SATA 3.0 of Fig. 14. (b) Zoom 1. (c) Zoom 2.

The number of input nodes to the ANN is 34 and 17 points
in frequency each for the differential IL and total FEXT. The
size of DoE is 79 designs, size of RTS is 49, and the size of
the test set is 129 randomly selected sets. The ANN used is of

Fig. 17. Aggressor victim topology used for FD-to-EH/EW mapping in all
numerical examples.

Fig. 18. Eye diagram for the SATA 3.0 channel for the design Crcv and
Cdrv set to 0.2 pF, Lexp to 2 in, Lbp to 9 in, and Zexp 1, Zexp 2, and Zbp
to 115 �.

MLP type with one hidden layer formed of ten neurons having
a sigmoid activation function and one output neuron with a
linear activation function. The SVM used in all cases hence
is from the Surrogate Modeling (SuMo) toolbox [26], [27]
for the same number of inputs and outputs. Fig. 19(a) shows
the correlation between the simulated and predicted EHs
using ANN and SVM trained with DoE and RTS set of
designs, and Fig. 19(b) shows the correlation between the
simulated and predicted EWs using ANN and SVM trained
with DoE and RTS set of designs. In Table III, the error metric
values of the prediction accuracy, as defined by (7)–(9), are
tabulated.

The values used to calculate the time of analysis are as
follows.

1) TD simulation time td = 7 min.
2) FD simulation time tf = 45 s.
3) Number of variable n = 7.
4) Number of FD metrics M = 2 corresponding to

magnitude in decibels of IL, total FEXT.
5) Number of frequency points sampled K = 17 corre-

sponding 1 to 9 GHz at 500 MHz discretization.
6) Number of parallel processing cores P = 4.
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Fig. 19. Correlation of predicted data obtained from the proposed mapping
methodology and simulated data obtained from TD simulations on selected
designs for the SATA 3.0 channel of Fig. 14. (a) EH. (b) EW.

TABLE III

SATA 3.0 PREDICTION ERROR METRIC VALUES

[ε, μ, AND δ AS PER (7)–(9)]

TABLE IV

SATA 3.0: SPEEDUP COMPARISON FOR THE EH/EW PREDICTION

METHODOLOGY WITH DoE AND RTS TRAINING METHODS

The time taken to optimize ANN parameters is negligible
and not considered in the time analysis. Table IV gives a
quantification of speedup for the SATA 3.0 test case obtained
across the two different training methods mentioned above.

TABLE V

PCIe Gen3 PREDICTION ERROR METRIC VALUES [ε,μ, AND δ AS
PER (7)–(9)]: CONSTANT EQUALIZATION

B. PCIe Gen3

A PCIe Gen3 channel with the topology shown in Fig. 20
and IL and total FEXT profiles shown in Figs. 21 and 22 are
considered for the second set of experiments. The design space
consists of six variables, Zpckg1 and Zpckg2 being the package
impedances, Z1 and Z4 being the termination impedances,
and Z2 and Z3 being the connector impedances, as marked
in the topology with L set to 8.9 in. PCIe topology involves
receiver equalization, which is not needed for SATA 3.0. For
the experiments here, a three-tap feedforward equalizer (FFE)
with a dc bias is used at the transmitter and a single-tap
decision feedback equalizer (DFE) is used at the receiver
end. For the first set of simulations, the equalization was
kept constant across the different designs in both the training
and test sets, whereas in the second experiment, the equalizer
coefficient was allowed to adapt to the channel response and
the impact of increasing the training set size on the accuracy
was observed. The difference in the eye diagram due to
adaptive equalization can be seen in Fig. 23. Fig. 23(a)–(c)
shows the eye diagrams for a PCIe Gen3 channel without
equalization, for constant equalization, and for the same chan-
nel with adaptive equalization, respectively. Equalization is
a TD phenomenon for HSS interfaces and its effect is not
simulated in the FD. However, the physics of the equalization
is captured in the EH/EW of the designs provided for the
model building, and hence, the FD-to-EH/EW mapping occurs
with acceptable accuracy as can be seen in the following.
A discussion on the nonlinearity introduced by the multiple-
tap DFE and the prediction accuracy of the learning-based
techniques, in presence of this nonlinearity, is presented in
Section VI-B3.

1) Constant Equalization: The DoE training set consists
of 45 designs and RTS training set consists of 90 designs.
The test set consists of 300 randomly selected designs. The
S-parameter inputs are differential IL and total FEXT at
500 MHz sampling from 500 MHz to 12 GHz (46 inputs).
The ANN used is of MLP type with one hidden layer formed
of 15 neurons having a sigmoid activation function and one
output neuron with a linear activation function. Fig. 24(a)
shows the correlation between the simulated and predicted
EHs, for some cases, using ANN and SVM trained with
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Fig. 20. PCIe Gen3 topology for a single differential pair.

Fig. 21. (a) IL profiles for the PCIe Gen3 channel of Fig. 20. (b) Zoom 1.
(c) Zoom 2.

DoE and RTS set of designs, and Fig. 24(b) shows the
correlation between the simulated and predicted EWs using
ANN and SVM trained with DoE and RTS set of designs.
In Table V, the error metric values for the prediction accuracy
as defined by (7)–(9) are tabulated for 300 test cases.

2) Adaptive Equalization: The test set consists of d = 6
design variables leading to 3d = 729 designs. The inputs are
differential IL and total FEXT at 500 MHz sampling from
1 to 12 GHz, three-tap FFE coefficients, dc bias, and the DFE
coefficient (51 input nodes). The ANN used is same as that
for constant equalization. Fig. 25(a) and (b) demonstrates the
EH and EW correlations, respectively, for the first 146 cases
between the simulated and predicted values using ANN and
SVM trained with DoE and RTS set of designs. In Table VI,
the error metric values for the prediction accuracy as defined
by (7)–(9) are tabulated.

3) Discussion on DFE Nonlinearity: A typical HSS channel
has a linear FD response from the transmitter to the receiver.
However, certain channels like PCIe require receiver equal-
ization, which could have a nonlinear behavior. This raises
a fundamental question as to how well the learning-based
models would operate in the presence of such nonlinearity.
In the PCIe Gen3 case study presented here, a single-tap DFE
was used at the receiver end. Fig. 26 shows the values of EH
to a sweep of the DFE tap value across a wide range, for a
single channel with fixed impedances.

TABLE VI

PCIe Gen3 PREDICTION ERROR METRIC VALUES [ε,μ, AND δ AS

PER (7)–(9)]: ADAPTIVE EQUALIZATION

Fig. 22. (a) Total FEXT Profiles for the PCIe Gen3 channel of Fig. 20.
(b) Zoom 1. (c) Zoom 2.

The EH is a nonlinear function of DFE tap value, but the
prediction accuracy for cases with forced constant equalization
is within 3%, as indicated in Table V. This example shows that
the learning-based models work well for receiver equalization.
To further strengthen the claim, the one-tap DFE was replaced
with a three-tap DFE. Different tap combinations were forced
for the said channel to study the behavior of EH with three-tap
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Fig. 23. Eye diagram for the PCIe Gen3 channel of Fig. 20 (a) without equalization, (b) with constant equalization, and (c) with adaptive equalization.

Fig. 24. Correlation of predicted data obtained from the proposed mapping
methodology and simulated data obtained from TD simulations on selected
designs for the PCIe Gen3 channel of Fig. 20 with constant equalization.
(a) EH. (b) EW.

DFE coefficients. It would be expected that higher cumulative
coefficient values should lead to better EH if the DFE response
was linear; however, several degrees of nonlinearity were
encountered in this paper. Fig. 27 shows the variation in EH for
increasing cumulative tap values and different combinations of
tap value arrangements.

When the DFE tap values are allowed to adapt to the
received bit sequences, they are a function of the channel
response and hence would lead to a highly linear behavior.
However, by forcing the tap values, the DFE was made to
operate in a weak nonlinear region and strong nonlinear region.
The prediction accuracies for all the three possibilities are
presented in Table VII.

VII. LIMITATIONS OF THE METHODOLOGY

The methodology of FD-to-EH/EW mapping is dependent
largely on the training data used to generate and validate
the learning-based models. Three common cases where the

Fig. 25. Correlation of predicted data obtained from the proposed mapping
methodology and simulated data obtained from TD simulations on selected
designs for the PCIe Gen3 channel of Fig. 20 with adaptive equalization.
(a) EH. (b) EW.

methodology could result in inaccurate prediction have been
listed here.

The first case is when the number of training sets used
to generate the learning-based model is insufficient. Fig. 28
shows the drop in prediction accuracy with a decreasing
number of training sets for the PCIe Gen3 channel presented
in Section VI. This paper outlines the two methods used to
generate training sets and the impact they have on model
generation time and accuracy in Section V.

The second case where prediction accuracy drops is when
the S-parameter data are undersampled or the number of
frequency points selected for FD-to-EH/EW mapping is insuf-
ficient. Fig. 29 shows the drop in accuracy with coarser
sampling in FD. The numbers on the plot indicate the number
of frequency points for the corresponding discretization value.
The data given are for the PCIe Gen3 channel presented
in Section VI.

The third case is when the TD simulation settings are
different for generating the model than those used for testing
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Fig. 26. Nonlinearity in EH with respect to the DFE tap coefficient value
for the one-tap DFE.

Fig. 27. Nonlinearity in EH with respect to sets of DFE tap coefficient values
for the three-tap DFE.

TABLE VII

PREDICTION ACCURACY WITH DIFFERENT

DEGREES OF DFE NONLINEARITY

the model. Simulation settings may correspond to rise time,
pulse width, and voltage swing of the input bit stream.
In addition, changes in channel topology like length of inter-
connects, package model impedances, connector/via models,
which have not been accounted for in the model generation
phase, may lead to inaccurate prediction.

Fig. 28. Breakdown scenario: increasing error in prediction using the
proposed mapping methodology for a smaller training data set size.

Fig. 29. Breakdown scenario: increasing error in prediction using the
proposed mapping methodology for coarser sampling in frequency points.

VIII. CONCLUSION

A DoE-based design space analysis may be insufficient to
capture sensitivity in a complex nonlinear design space for
HSS channels. A full-factorial TD analysis is prohibitive due
to excessive time requirements. Hence, modeling TD metrics,
EH/EW, from FD S-parameters can be used for accurate
EH/EW prediction. Learning-based modeling algorithms like
MLP-based ANN and LS-SVM for space mapping from FD
to EH/EW are demonstrated to work well for two different
interfaces, SATA 3.0 and PCIe Gen3. A reduced training set
algorithm is also proposed to bind the time for training the
space-mapping network. The numerical results are presented
to demonstrate the accuracy and speedup of the proposed
methodology.
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